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A scheme for a nonlocal theory of quantized fields based on the hypothesis of
stochastic space is proposed. Within this scheme the gauge-invariant quantum
electrodynamics of particles with spin 0, 1/2, 1 and four-fermion weak interac-
tions are constructed, and nonlocal corrections to the anomalous magnetic
moments of leptons and to the Lamb shift ase calculated. Some consequences of
the neutrino oscillations and the electromagnetic properties of neutrinos are
considered in detail. Further the rare decay K? — p*p~ and the mass difference
of K? and K2 mesons are investigated in this model. It is shown that the
parameter of nonlocality (elementary length /) of weak interactions which can
characterize a domain of unification of weak and clectromagnetic interactions is
~107'® cm. The low-energy experiments imply that quantum electrodynamics is
valid up to distances of order ~ 10~ '3 cm.

1. INTRODUCTION

One of the fundamental principles of the quantum field theory (QFT)
is the locality condition (the commutation rules). More clearly, this means
that the commutator of operators of physical fields disappears outside the
light cone. On the other hand, this property of locality ensures indepen-
dence of events separated by spacelike intervals, i.e., the causality condition
is space-time (usually called the microcausality). A strict formulation of the
microcausality in QFT was given by Bogolubov and coworkers (1959).

A possible violation of locality at small distances is conditioned by
intrinsic problems of QFT like the ultraviolet divergences, the problem of
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electron self-energy, etc. This problem appears especially inevitable as soon
as we want to describe extended objects within the QFT.

Among attempts at a self-consistent construction of QFT with a
reasonable locality (macrocausality) condition at small distances, a dis-
tinguished role is played by nonlocal QFTs. There exist two different
approaches to construct such a theory. Supporters of the first approach
assume that in Nature there exists some new fundamental constant of
dimension of length, together with such constants as the velocity of light ¢
and the Planck constant /4. Further, they assume that at distances of this
new universal length / one must expect a principal change in our concepts of
the physical world and in particular the concept of space(-time) and locality
(causality). The main problems of this approach and possible ways of
changing the contemporary theory were discussed by Efimov (1977) and
Kadyshevsky (1980), where earlier references concerning this problem are
cited. Some possibilities of introducing the concept of fundamental length in
physics were considered by Blokhintzev (1973), Cheon (1978, 1979), Brout et
al. (1980), Ginzburg (1975), Ehrlich (1978), Fubini (1974), Hsu and Mac
(1979), Markov (1958), Lacroix (1979), Takano (1961,1967), and Yukawa
(1950).

The second approach is based on the assumption that the parameter / is
not a universal fundamental constant but characterizes only the domain of
nonlocal interaction of the considered quantum fields (see, for example,
Efimov, 1977). Thus the parameter / of dimension of length arises inevit-
ably at any attempt to introduce nonlocality into the theory. Recently,
high-precision measurements (Bailey et al., 1979; Van Dyck et al., 1977,
Robiscoe, 1968; Robiscoe and Shyn, 1970) in atomic physics, for example,
measurements of the anomalous magnetic moment (AMM) of muons (elec-
trons) and of the Lamb shift, have given the following restrictions on the
parameter /: / <107 ecm (/<5107 "% ¢cm) and / <1073 cm, respectively (see
Efimov, 1977; Hsu and Mac, 1979) [for discussion of various theoretical
contributions, where earlier references can be found, as well as for a review
comparing the theory and experiment, see Brodsky and Drell (1970),
Lautrup et al. (1972); Calmet et al. (1977), and Kinoshita (1979)]. From the
high-energy experimental data it follows that /<<107'® cm (Flugge, 1980;
Wolf, 1980; Beron et al., 1978; Barber et al., 1979; Bartel et al., 1980;
Berger et al., 1980).

Tests of locality are usually performed by modification of particle
propagators and vertex functions. In particular, tests of quantum elec-
trodynamics are carried out in terms of modified electron and photon
propagators (see Kraus, 1975; Magg et al., 1972, and Ringhofer and
Salecker, 1980). On the other hand, it is well known that the introduction of
nonlocality into theories which belong to the second approach leads to a
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change of particle propagators (Efimov, 1977). However, this change is not
arbitrary and is determined by fundamental principles of QFT like Lorentz
covariance, finiteness, unitarity, causality, and gauge invariance. Roughly
speaking, the aim of a nonlocal theory is to find restrictions on the choice of
a form for nonlocal particle propagators (or so-called form factors of the
theory).

Thus an analysis of experimental data for testing locality must be
performed within a theory that satisfies the basic principles of QFT. The
problem of constructing a nonlocal theory satisfying the above-mentioned
basic principles is now solved successfully (Efimov, 1972,1977). One as-
sumes in this theory that neutral particles (for example, photons and
neutrinos) are “carriers” of nonlocality, while the charged fields are consid-
ered to be local.

Thus introduction of the nonlocality into this theory leads to changing
only the propagator of the uncharged particles in the perturbation series for
the S matrix satisfying all the general requirements: causality, unitarity,
gauge invariance, etc. (Efimov, 1977). For example,

g‘“,/(_kz_if)—’ gperA(_kll,’-; )/(_k2 _18)
for photons, and

k/(—k?—ie)— kV,(—Kk%?)/(—k* — ie)

for neutrinos, where ¥, (z) are entire functions of a finite order of growth
p=1/2 in the complex z plane which decrease rapidly enough when
z=p?—> —oo (in the Euclidean direction), and /, and /, characterize the
size of a domain where electromagnetic and weak interactions become
nonlocal.

However, the above-mentioned way of introducing nonlocality into the
theory does not remove all ultraviolet divergences from the perturbation
series for the S matrix. There are divergences in the so-called vacuum
polarization diagrams constructed using propagators of the charged par-
ticles. Usually, in order to remove the divergences in these diagrams, one
uses the modified Pauli-Villars regularization (see Bogolubov and Shirkov,
1959; Slavnov, 1974; Efimov, 1972). This method of regularization of
singular functions is to be understood as a formal procedure only and has
no definite physical meaning.

It is generally accepted at present that the essence of mathematical
methods for removing divergences is in a more or less explicit way con-
nected with the properties of space at small distances or with the very
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nature of high-energy interactions which is inherent to all types of interac-
tions. Thus we believe that the method of eliminating ultraviolet divergences
must be the same for all types of diagrams and must have a clear physical
meaning.

Some attempts have been undertaken to construct quantum field theory
in a stochastic space (see Markov, 1959; Takano, 1961,1967; Ingraham,
1967 and references therein).

A stochastic space that can be used in theories of elementary particles
was first considered by March (1934, 1937), Markov (1958), and Yukawa
(1966) (see also review of Blokhintsev, 1975). Mathematical spaces with a
stochastic metric and a quantized domain were investigated by Frederick
(1976) and Roy (1979), respectively. Prugovecki’s (1978a,b) papers are
devoted to the construction of relativistic kinematics for massive and
massless particles in the stochastic phase space. An original idea of this
review, i.e., construction of the theory of electromagnetic and weak interac-
tions of leptons within the framework of a stochastic space, was first
formulated by Dineykhan and Namsrai (1977,1978).

Papers by Namsrai (1980a,b) are devoted to investigation of the
stochastic space R ,(x) with

2=(xq+iby,x+b) (xo=ct) (1)

x =(xg,x) being the regular part of the components % and b® =(b,,b) some
small random vector with a distribution w(b% /1?) obeying the conditions

[aw(b2/1?)=1,  aw(b2/1?)=0 (2)

here [ is some universal length (a scale of errors). In our case, the universal
length / characterizes physically a certain domain within which the existing
space concepts and causality conditions may be violated and the stochastic
properties or fluctuations in the metrics can be manifested if they exist.

Dynamics of particles (Namsrai, 1980a,b), relativistic Feynman-type
integrals (Namsrai, 1980c), and Euclidean Markov field (Namsrai 1981a)
have been investigated within the framework of the stochastic space R (%)
(see also review of Namsrai, 1981b). It appears that a field obtained by
averaging in the space R,(%£) turns out to be the nonlocal field considered
by Efimov (1968,1977) (see section 2). Equivalence of these approaches
leads to the following hypothesis: The origin of the form factors which
change the electromagnetic (Efimov, 1972) and weak (Efimov et al., 1973)
potentials at small distances and the properties of the vacuum polarization
may be connected with the stochasticity of space on the microscale.
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Thus within the framework of our scheme, all fields, both neutral and
charged ones, become spread out (nonlocalized) over the space. This allows
one to take into account in a unified way an effect of stochasticity (or
nonlocality) in all physical processes. However, the change of charged
particle propagators essentially complicates the proof of gauge invariance of
the theory.

This paper is a review of the construction of gauge-invariant quantum
electrodynamics for particles with spins 1/2, 0, and 1 and of the four-ferm-
ion theory of weak interactions in stochastic space. Within this framework,
the electromagnetic and weak processes are investigated and contributions
to the AMM of leptons and to the Lamb shift due to nonlocality (stochastic-
ity) are estimated. The problem of neutrino oscillations and its conse-
quences are also discussed in this theory. Here the considerations are mainly
concerned with the low-energy processes. Notice that at very high energies
testing of locality of the theory may be difficult because of interference
effects between the electromagnetic and weak interactions. For example, in
the standard model of electroweak interactions, testing of QED will be
disturbed by the interference with the weak effects due to Z°® bosons.

2. STOCHASTIC SPACE AND NONLOCALITY

In the relativistic theory the space in which the physical processes are
investigated is the Minkowski space. Now the problem appears as to how to
introduce the stochasticity into this space.

Indefiniteness of the metrics of this space leads to specific problems
which do not appear in the case of Euclidean space. These specific difficul-
ties in the physical space are connected with the invariance assumption and
normalization condition for the probability of an interval in the indefinite-
metric space (see Blokhintsev, 1973, for details). For example, the require-
ment of invariance, roughly speaking, means that the distribution w(,) of
the vector b, must be a function of the interval b> = b,b* = by —b?, and the
normalization condition gives the equality

[aw(b,b*)=1

These two conditions cannot be, in fact, fulfilled simultaneously in the
Minkowski space. It turns out that one can get rid of the above-mentioned
difficulties by making the following assumptions (Namsrai, 1980a,c).

1. The physical quantities are considered as functions of complex times
t + i in the limit 7 —0.
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2. The space stochasticity appears in the Euclidean space (,x) but not
in the Minkowski space (f,x). The importance of the method of shift
Xg— Xp+it in the time variable in quantum field theory and quantum
mechanics was noted by Alebastrov and Efimov (1974) and Davidson
(1978), respectively (see Efimov, 1977, also). Thus in our model the actual
points of the space R,(*%) consist of two parts (1), where b, = 7, and any
physical quantity f in R (%) depends on arguments of the type x, + ib,,
x+b, re, f= f(x, +iby,x+Db).

Since, in our model the actual points of the space are of a stochastic
nature, these points cannot be used as a basis for a coordinate system, nor
can one take a derivative with respect to them. However, the space of
common experience (i.e., the laboratory frame) is nonstochastic on a large
scale. It is only in the microworld where the stochasticity manifests itself.
One can then continue mathematically from the microworld to this large-
scale nonstochastic space. This mathematical construction provides a non-
stochastic space to which the stochastic physical space can be referred. This
is the Frederick (1976) argument. In our case the mathematical construction
reduces to averaging with the distribution w(bZ //%) at any point of the
space R ,(x) at a given time.

Therefore the averaged quantity ( f(%)) on R, (%) with w(b} /I?) is
called the physical value of f(x, ) (Namsrai, 1980b). Especially, the consid-
ered field @(X) after averaging in R 4 X) acquires the following form:

or(x)=(9(£))x = [d*bew(b}/1*)@(xo +ibyx+b)  (3)

This is just the nonlocal object which has been carefully investigated by
Efimov (1968,1977) from the viewpoint of the distributions

(x)= 3 02" ¢,
K xX)= C D n , D:—— _

(4)

The space-time properties of these depend essentially on the sequence of
coefficients c,. Efimov has shown that the objects @4(x) constructed by
these distributions are spread out (nonlocalized) over space. Thus the
relativistic invariant distributions K(x) give a correct description of ex-
tended objects. In this case, roughly speaking, the parameter / may be
identified with the size of an extended object (a particle).

Due to Efimov (1977) we can calculate the causal Green functions of
the spread-out field @g(x) [keeping in mind that the T-ordering symbol
concerns the field ¢(x), where (%) 1s a scalar field with a mass m] by the
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following formula
D(x, = x,) = (0| T(p(x,)9a(x,)) |0)
=ffd"b,5d4b2£ W(b%E/IZ)W(b%E/IZ)
XCO|T(@(x10+ib1g, X, +by )@ x50 + ibyg, X, +1b,)} | 0)

1 d°
:ffd“bmd“bzzsw(bfs/ll)W(b%E/lz) Tf (2711;4

% CXP[iPO(xlo — Xy tiby— ib24)_ ip(x; —x, +b, _bz)]
m?— p®—ie

1 d4 Kv _p212 2 )
A
m
where

K(— p¥*) =fd‘bEexp(—ipb—p0b4)w(b,25/12)
=(?-'lr)zfomahfmz‘*'(ooz/lz)"fn[P(—1)2)'/2]/(—pz)'/2

P=p-v (6)
Here %,(z) is the Bessel function.

Notice that the Fourier transforms of distributions (4) are determined by a
representation of the type (6). The expression (6) is investigated as usually
in the Fuclidean domain p?> <0 of the momentum variable p (Efimov,
1968,1977). The passage to the case of p>>0 is done by an analytic
continuation (see Efimov, 1968,1977). Further we are interested only in the
class of distributions w(b% /%) for which K(z) (6) are entire functions of
the variable z with a finite order of growth o> p>1/2 and which decrease
rapidly enough when z = p?> > — oo (in the Euclidean direction).

So, starting with the hypothesis of stochastic space we come to the
nonlocat theory of Efimov with the only difference that the causal Green
function S( p) of any charged particle is replaced by

S(p)~ Sx(p)=V(~ p*I*)S(p)
where _
V(=pP)=IK(=pP)*  P=p,
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for which the Mellin representation

W-pr)=g; [ 1 S = e ()

@<ﬂ<0
is valid. The form of the functions ¥(— p?/?) and v({) depends on the form
of the distribution w(&% /1?). For example (Namsrai, 1981a), let

f

() B
2 4(sin ml /ml ~cos ml)

w(y?) =1 x5, ,,(mi(1~y?)'?), 0<y<l

{ 0 y=1

Then we obtain

V,ZIK..(—p"IZ)IZ=( o )z[(m’—pz)l?'r2

sin ml /ml —cos ml

x (sinf(m? ~ p)]"72 / [(m2— p2)}"/* ~eosf(m? = 5] /2
(8)
0,(8) =924 B[22+ 7 +5] /T(T+2%) (9)

Here m is some parameter (m2]? «<1) which can be identified with the
particle mass. Notice that the form factor (8) in the case m =0 describes the
spread-out electron as a uniformly charged sphere of radius / (Efimov,
1977).

The main restrictions in the choice of form factors ¥(— p?1?) as entire
functions arise from the fundamental theoretical principles, i.e., from unitar-
ity and causality (Alebastrov and Efimov, 1973, 1974).

The physical meaning of form factors consists of changing the form of
potentials between interacting fields (for example, the Coulomb and Yukawa
laws) at small distances and in making the theory finite in each order of the
perturbation series of the theory in coupling constant (Efimov, 1977). The
question about a possible unique choice of the form factors [in our case of
distributions w(b% /1?)] was discussed by Efimov (1977) (see also Papp,
1975).
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3. GENERALIZATION OF KROLL’S PROCEDURE AND
GAUGE INVARIANCE OF THE THEORY

The hypothesis of stochastic space leads thus to a change of propaga-
tors of both neutral and charged particles. It is well known that any
modification of the local causal Green functions of charged particles re-
sults in a violation of some algebraical relations (for example, the Ward—
Takahashi identities). The fulfilment of these algebraical relations grants the
gauge invariance of the theory. There are numerous papers (Kroll, 1966;
Kraus, 1975; Magg et al., 1972; Ringhofer and Salecker, 1980) devoted to
this problem. Among these, Kroll’s work plays an important role. The
earlier result obtained by Dineykhan and Namsrai (1977) is based on
Kroll’s prescription. The essence of this procedure consists in the following.

1. To satisfy the conditions of gauge invariance for the modified theory
(with the changing propagators of the charged particles) one must change
the form of the one-photon vertex (for example, in the case of QED):

%~ U, k)=—d,(k)Sx'(3) (10)
(Figure 1) due to the Ward-Takahashi identity
k L(p.q)=Sk(#)— Sp(q) (11)
where
LAp.a)=Sa($)U(k,q)Sx(3) (p=k+q) (12)

Here d (k) is some operator whose action on the entire functions is
determined below.

2. Any theory with the modified propagators and the vertex functions
contains the minimal number of the many-photon vertices e"U, satisfying
the condition

Ulq; ky»---.k, )= —d(k,)U,_(q;ky,....k,_,) (13)

with Uy=Sz . If S;' and U, are polynomial functions then the minimal

q+k k
y m{ e
q q q+k
Fig. 1.
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(Kroli, 1966), we obtain

Ky,

d,(k)V(—g1?)=[V(— (g +k)'1?) = V(— g42))] X

(15)

5. The d operation for the inverse of entire functions. Acting on the
identity

V(= g (= ) =1
by the d operation we get
d(k)V (=g 1?)==V"(=(g+ k)" 1*)[d,(k)V(— ¢**) |V (- %)
(16)

6. Calculation of d,(k)Sg(§) where Sg(§) is the modified propagator
of charged particles. From the identity

d,(k)[Sx(3)Sz'(9)]=0
it follows that
d,(k)Sp(3)=— Sp(q+k)[d,(k)Sz(2)] Sx(2) (17)
d,(k)Sx(3)=Sr(q+K)T\,(k,q)Sp(4)
where

rlu(k’ q):Ulp(k’ q): _dp(k)SR_l(Q)

It is a particular case of (14) at n=1.
7. The proof of validity of the generalized Ward-Takahashi identity:

(P, —4)T.(p,q)=Sr(5)— Sk(q) (18)
where

L(p.q)=Sx(P)U(k,q)Sr(3), k=p—gq
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Taking into account the relation
Uk, q)=v V" (= g**)+(m—g—k)V" (= pl*)
x[d,(k)V(—g1%)]V (- ¢%?) (19)

and equation (15) we obtain after some calculations the identity (18).
8. Charged closed loop: first of all notice that due to Kroll (1966) the
closed loop in the local theory is given by

I-‘[n(kl"'”kn): %fd4qsp{rn(q; klv---»kn)SR(Q)}

where
sk(q+ 3 k‘.-)r"(q;k.,...,kn)sk(q):(—1)"d(k.)-~-d(k,.)sk(q)
i=1

A generalization of this equation to the modified theory with entire form
factors represents no difficulty and the charged loop is determined by the
following expression:

1 N
TR(Kkysenok,)= o [d%gSP{TX(g: Ky k,)SR(@)) (20)
where
LA g ky-e k)= V(= G22)T( g5 Ky )

Se(4.)T(q5 kys-- ..k, )SR(G)

P L B
% 2, n— pyr o)

XUj(‘Ij; kj+l""’kn)SR(éj)I‘n—j(q; kl’---’kj)sk(‘i)
=(—1)"d(k,)--- d(k,)Sx(§)

with T, = S '(§)- Tensor indexes are omitted here.

Thus we have generalized Kroll's prescription for our case and have
obtained the necessary algebraical relations which provide gauge invariance
for the S matrix in any order of the perturbation series. Investigations of
gauge invariance of the S matrix for concrete interactions will be given
below.
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4. THE INTERACTION LAGRANGIAN AND CONSTRUCTION
OF THE S-MATRIX

According to the above deduction, we must construct all physical
guantities (for example, mteraction Lagrangian, causal Green function, etc.)
by means of the nonlocal fields @y(x) which are associated with the fields
¢(%) by formula (3). The causal Green function of the field @g(x) is
determined by expression (5):

De(x—y)= <0|T(‘PR(X)‘PR()’))IO>

in the physical space, i.e., in the space of a large scale, where

Vax— y)= [d*qe e IV(— g*1*)A(q) (1)

is the Efimov nomlocal Green function if V(z)=|K(z)|® is an entire
function and A(q) is the Fourier transform of the local Green function.

The Lagrangian of a system of fields is constructed in terms of the
averaged fields ¥ = @g(x)=(@(X))x in the Minkowski space. Thus the
initial Lagrangian describing the electromagnetic and weak interactions of
leptons is chosen in the form

£(x)=Eq(x) + L x) + £,(x)

o=~ 7 [BA[BAD]+ ZFEB-m)50) @)

Eom=— e F()AH(x):,  B,=

T2

where 4 (x) and ¥;(x), »(x) are the nonlocal fields of photon and leptons.
The summation in (22) runs over all comnsidered fermion fields (j=
e n,v,,7,).

Formally, the S matrix can be written in the form of the T products:

(F(x)0,7(x)) (7 (x)0.¥(x))

. (23)
S":ik_‘fdxl Ut fdand{ ’Lll [E’cm(x_[)+ Bw(xj)]}
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Here the symbol T, means the so-called Wick T product or T* operation
(see, for example, Bogolubov and Shirkov, 1959; Efimov, 1977) and the
lower case d corresponds to the algebraic prescription determined in Section
3. If the form factor (6) is chosen as an entire function, then the proof of
unitarity and causality conditions in our scheme proceeds by the same
method as that of Alebastrov and Efimov (1973, 1974). Quantization of such
a system has been carried out in detail by Efimov (1974).

In order to construct the perturbation series for the S matrix (23) by
prescriptions of the usual local theory, it is necessary to change (in the
Feynman diagrams)

m+k m+k B VoK)

- V. (— k%), ,
mi—k2—ie mP—k*—ic l ) —k2—ic " —k2—ie
k k
- Vo(— k21
—k2—ie —k?—ie ol )

and at the same time to insert the modified function (10) into the verticies at
the external photon lines. The calculations of the matrix elements for the
charged lepton loops will be carried out using the formulas (20) and (14).

5. INVESTIGATION OF THE PERTURBATION SERIES FOR
THE S-MATRIX IN THE QUANTUM ELECTRODYNAMICS
OF PARTICLES WITH SPINS 1/2,0, AND 1

5.1. The Spinor Electrodynamics (QED). The construction of the per-
turbation series for the S matrix is possible only within the framework of an
intermediate regularization procedure. We shall use the regularization pro-
cedure of Alebastrov and Efimov (1973). The regulanizations introduced
there make it possible to pass to the Euclidean metrics in any diagram of the
perturbation theory. We recall that the form factors V(— g%/?) decrease
only in the Euclidean direction, i.e., when g2 — — co. Therefore we shall
investigate the Feynman diagrams in the Euclidean momentum space.

Let us calculate the matrix elements for the S§ matrix corresponding to
the following primitive diagrams (see Figure 3) which are divergent in the
usual quantum electrodynamics.

5.2. The Diagrams of Vacuum Polarization. In the gauge-invariant
stochastic theory the vacuum polarization in the second order of the
perturbation theory is determined by diagrams sketched in Figure 3a. In the
momentum representation the term of the S matrix which corresponds to
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5¢A

c)

Fig. 3.

these diagrams is given by an expression of the type (20):

va(kl’kl) hm 4 2_/ q m [Fpsv(q’kl’kZ)Slg(q)]

(k,+k,=0) (24a)
where

S(4)T,,(g; ki, ky)S(3)=(—1)*d,(k,)d,(k,)S(q)

V=)= g [ ke (- i)

sm7r§
0O<g<

g,=qg+k +k,=q,S=S, (24b)

Equation (24a) is simplified by the d operation determined in Section 3. The
regularization procedure § guarantees the possibility of passing to the
Euclidean metric. Taking thus the trace, integrating over d*q, and going to
the Euclidean metric we obtain (in the limit § — 0, detailed calculations are
given by Dineykhan and Namsrai, 1977)

Hf,,(k)Zzi;z(k# gk )211./- % v(f)( 2[2)§

i  SIna¢

Xj(;ldxx(l— x)'” §I1’1((1 i))ﬁf

where £, =1—(k?/m?)x(1— x).
Assuming m?*/? <1 we get

2
e
A (k)= (k,k, — g,k /dxx(l—x)
Bo(x) 5 ’ 2,2 242
X logm—g+v(0)+logml +0(m l )
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We see that after the charge renormalization the value obtained for the
vacuum polarization coincides with the renormalized expression in the usual
local theory (see, for example, Bogolubov and Shirkov, 1959).

5.3. The Diagram of Self-Energy (Figure 3b). The corresponding term
in the S matrix can be written in the form

—i:¥(x)Zg(x— y)¥(y):

where
1 .
Bp(x—y)=—— [d*pe? ™5 (p)
2n
Here
: ie Vo (—k21%) m+p—k
Sq(p)= lim 4far“k Oy, — P
§-0 (27) —k*—ie "m —(p—k) —ie

XV —(p—k)'1?)

We can use the representation (24b) for the form factors VOS(— g*1*) and
V3(---) and the general Feynman parametric formula

n

e Dt ) ( )
By M1 p e = = [ da,- da,d|1— 2 a;|af'™
‘ L(py)- - T(p,) f(; ! f >

i=1
n TR TRy,
a1
X akr > a;b;
j=1

Then, after some calculations we get

gR(p):Lsz_B+lw u(s“) (m22)°

sinm¢
O<B<h

1 YT, v(n) mi2)? I'(=n-Y%)
8 'f~v+ioo Sm"”l( )F(l—n)r(l—f)

O<y<l

X'/(;ldx(l;x)g(l—%x)§+"(2m—ﬁx) (25)
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Assuming the value of m?/? to be small, one can obtain for the
self-energy the following expressions:

~ _ e2 1 n m2
ER(p)—g;'/(;dx(zm px)logm
e’m 1
+ 31
167r2{[ B
x [ E g o185y
—B+icc

sin“wr{
1
m— lo
16 2( p)” m?

U(f)v( §) (1__§)

sin®mt

"0)—1+ —
—30v'(0)—1+ 57

+ O(mzf'z)}

T

B +ioo

+ O(mzlz)} (26)
The calculation of integrals of the type

a (=B-ieo o(S)o(=8)
2i‘/-ﬂ+:oo d sin®m¢ ()
O<g<i)

is simple for a concrete choice of the function v({). For example, for

s <[ SEEDE L el oy
O<y<l)
where
v0,(§)=2""2/T(3+2¢) (27)
the first integral in (26) is of the form
TN ==l Lo b Aoy
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Incidentally, we notice that the form factor V, describes the spreaded
electron as the uniformly charged ball with radius / (Efimov, 1977).

Thus the value obtained for the self-energy differs slightly from the
value calculated in the Efimov’s (1972) nonlocal theory.

5.4. The Vertex Diagram and the Corrections to the AMM of the
Leptons and to the Lamb Shift. Let us consider the vertex diagram shown in
Figure 3c. In the momentum representation it has the following form

BRpq)= - [a%D(~(p— k) ,d,(0)S()y,

(277)41'
where
. ] V.(— k%)
d S(k)= = L =
[@)S(R)= =
+—— [V~ (k4 g 2) =¥ (— k)|
m—k—g

The intermediate regularization procedure § is omitted here and below. By
using the identity

a"— "‘—‘n(a—b)foldx[(a—b)x+b]"_I (28)

the difference of the form factor values can be transformed to the form

V(= (k+q)’ 1) =V, (— k)= —[q* +2(k-q)]

% lf—ﬁ—iood§ U({) 12%,

2—1: —B+io0 Sin'lT{
1 _
X/o dx[mz—kz—Zx(k'q)—qzx]f '

which is convenient for calculations.
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Carrying out the necessary estimates we obtained the usual form for the
matrix element of the vertex functions between two free single-lepton states:

FR(p.g)= U(p){v,,F(q )+ s )}U(m (29)

where Fi(¢%) = fi(¢®)+ /(q?), Fx(¢*) = g/(g*)+ gx(¢*). Here

1
% = 5; (00, — %)

2488 -287 29 (1-y)(1— @) [T(1=7—1)
m

J

fl(‘?z): N(fﬂl){

xe?‘*”“—zr(—n—f)f’.'”}

g(q?)=4N($, 7)B(1—B)T(1—n—¢)ET ™8

2 2
fz(qz):N(f,ﬂ)nfldtHZq—Z 2q7(a+ty) (1—-B—2a—2ty)
0 m m?

J J

><F(1—n*s“)ﬁz_'””“ﬂ(—n—f)@”}

gz(q2)=4N(§,n)nfO'dzB[1—B—2a~2zy]r(1—n—g)e;Hw

el 7l f—f—ic D m?) —p—ioo 7
M= T [ e wi ) gy ()

2 )4 2i sinw{ 2i)_ i 17smvm

l—f)lr(l—n) fffd“dﬁd’f By 8 (l—a—B—v)
0

I(
q2 qz q2
B =L0(¢7) = s ry(1=y)+2- saty 5 iyf
J J j

El(qz)=(1—ﬁ)2—%av, (m,=m,, m,)
i
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The first term of (29) in the limit ¢* -0 and with the assumption m}/* <1 is

FJ(42)

2
Y

2
1 o 9
=——/1lo —2log— —v'(0)+

4 (1) 8 1 20 a q*
g2 _s . | G
m3lo(1 )[ 30 v'(0)+4——+ o) 310gn1f12 5 ” 7 i

{%(logﬁ;—%)-l-v(l)mzl [ v'(0)+ i D((l)) +logm21"—%”

(m, is photon mass) and contains the terms corresponding to the charge
renormalization of the leptons. The second term of (29) at g°> =0 contrib-
utes to the AMM of the leptons by

= F,(0)= «a f_ﬂl:_l:od{ v($) _Y—i°°d (1)

2 )2 27 sinm{J_, 1,  sinmy

)y D= =P 428 4m)
() ey (M=)

Assuming m?I* <1 (m;=m,, m,) we get

ay= o {1+ [—-0(1)— ””"""’dfw—”(“."ﬁ‘_“z(l—;)”

—B+io sin“m¢

:%[l_gmgzzu(l)] (30)

The present experimental values of lepton AMM (Van Dyck et al., 1977,
Bailey et al., 1978)

(e )=(1,159,652.41+0.2)10°, (#)=(1,165,924+8.5)10°

exp exp

are reliably confirmed by quantum electrodynamics (Calmet et al., 1977;
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Kinoshita, 1979). It is natural to suppose that the contributions calculated
here should be of an order not greater than the experimental errors. This
makes it possible to establish the following restrictions on the parameter /:

i<

~

4.9%x10" " cm for V=V, (o)
€
4.5x10" "% cm for V=V,

[ < 1.5X107 " cm for V=V, ()
T11.4x107 % cm for V=V, #

Here V=V, is given by (see Namsrai, 1981a)

v, =Sin4[[(m2_q2)l/2]/[[(m2_qz)l/2]4

_ L opmpieo 08 ner 0 5
_2l_f_ﬁ+iw dgsin'rrfl (m*—q*—ie) (31)
0<B<h

2|+2§(22+2§_ 1)

2= "F5720)
and V=V, equals (8).

Similarly, for the level n =2 of the hydrogen atom the calculated shift
28,,, —2P, ,, due to (29) is (see Efimov, 1977, for detail)

=~ & Ry m2o(1)] Lo(0)+
Y R A I e

For the function v ({) determined by (9) this expression acquires the form

1[ +4.15) (32)

o’ m2l?
AE,(ZS,/2—2P|/2)=——Ry- 108m2 2

27 5
where
o’Ry= m?a5/2= 1.25X10° MHz

The observed shift of 1057.912+0.011 MHz is well explained by QED
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(Brodsky and Drell, 1970; see also Scadron, 1980). Therefore |AE/(2S, ,, —
2P, ,,)|<0.011 MHz and substituting the formula (32) into this inequality
we get / <S1.9X107 "3 em.

The S matrix obtained is gauge invariant. Indeed, in the stochastic
electrodynamics under consideration the Ward identity

is valid because this identity is a direct consequence of the identities (17)
and (10). Since we must not do any subtractions of infinite counterterms, no
dangerous terms which can break the Ward identity when the formula (17)
is valid will appear in the perturbation theory. The diagram of the vacuum
polarization is gauge invariant due to our choice of the gauge-invariant
regularization procedure of Kroll.

6. THE ELECTRODYNAMICS OF PARTICLES WITH SPINS
0and1

Now let us construct within the framework of our approach the
gauge-invariant quantum electrodynamics of particles with spins 0 and 1 on
the basis of the first-order Duffin-Kemmer equations (see Efimov and
Namsrai, 1975).

Investigation of the perturbation theory for the S matrix constructed
on the basis of Duffin-Kemmer equations will be formally the same as in
QED of leptons. Therefore, in this case we should use the methods and
procedures developed in constructing the gauge-invariant spinor elec-
trodynamics in terms of stochastic space concept.

Hence, as was shown above, the averaged field ¥ (x) of a boson field
in the space R,(X) leads to the change of the free-particle propagator (in
momentum representation):

p+m)—p*+m?

Bl 2 P
T(p)= 2~ V(= PPP)T(p)=Te(5)
m(m?® — p* —ie)

where p = p,B, and B, are the four 16-rank matrices which are split into
five- and ten-rank matrices for particles with spins 0 and 1, respectively. In
this case it is also necessary to change the form of the one-photon vertex:

B~ U(q, k)=—d,(k)Tz'(§)
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Here the following identities hold:

d(k)To(3)=Tx(g+ k)U(q, k)Te(q)

(33)
(P, —q,)TR(p.q)=To(p)— Tr(§)
where
LR p.q)=To(pYU,(k,q)Tr(d), k=p—gq
Ulk,q)=BYV (= ¢ I*)+(m—gq—k)V'(- p**)
x[d (k)V(—g®) V(- ¢%?)
and
k,—2B.k+2k
4V (~ )= (¥~ p2) V(- gor2)) L2 T2 o

k2

Let us now examine the perturbation series for the S matrix.

6.1. The Diagrams of the Vacuum Polarization for Boson Fields. The
expression (24) for boson fields becomes

)
= . 1e -
ML (ke ko) = fim =g Jd*avi(= a3*)sp[Lila. ki, k2)TR(Q)]

(35)

where k, +k,=0,9,=q+k,+k,=gq,

TR(@:)R»(‘L ki ko) To(3)=(— 1)2dp(kl)dv(k2)TR(q)

Making use of the definition of the d, operation (34) for an entire functions
and

if n is even

8uw8Bro” " 8Brx T 8r8o.. " 8pr8
S = " X .. pTdxp
p{(B.B.AB, - B,BB.) { ¢ s e
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for the scalar boson,
SpB.B,=6g,,
SpByByB/\Bp = 3( g;wg)\p + gp)\ gvp )

for the vector boson, and performing necessary calculations we get

=Y 1) — —y—iw () (m*?)!
T (k)= — (gwkz kk)ZI/_y+,»wd pemprs
O<y<h
(- ¢
dx(1— 1-2
r(1 f)f x(1-x) "5 (1-2x)"E
for the scalar boson, and
Ty y— — & 2 1 0(§) 2,21\¢
M1 (k)= = g (g = ke )3 [Tl e ()

(1<y<2)
l —-x)7¢ —2x)°
xfodx(l ) {3(1-2x)
XT(=¢)/T(1=¢)+2[T(=1-§)/T(1- )], ) £§

for the vector boson and £,=1—k2x(1—x)/m? (see Dineykhan et al.,
1977, for detail).

Assuming the value of m’/?
finally

s) —_ —
)
TG (k) = 5~ (kg = k,k,)

(m;=m_,m,) to be small we obtain

4

X{,,::/d (k /n}; )( ,) +2[v'(0)+]ogm212]+%}

[10(k) = - (K8, —k,k,)

X/()Idx{(Z—Z%x(l—x)—ﬂl—2x)2)log[l—’l;—22x(l—x)]
+2(2 ‘—6"—2)[ '(0)+1log m21?]

kZ
_W—-——2+§+?x(l—x)}
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It is necessary to perform the charge renormalization of the scalar boson
and the charge and mass renormalization for the vector boson, and after
these procedures we obtain the usual quantum-electrodynamical quantities
for the vacuum polarization of these particles:

o

k2 k?
(k)= Cy —z(kzg,w" k#k»)fold)’)’“/[lﬁ ?(1 - yz)}

(k)= 5 (kg — k) [ dx
X {[2—2—1(—22—x(l—x)—3(1 —2x)2]log[l - k—zzx(l—x)]

2 k? k?
=3(1-2x) —5x(1—x)+2—x(1—-x)
m m

6.2. The Self-Energy of the Boson. Let us now consider the self-energy
diagram, shown in Figure 3b (here the solid line corresponds to the boson

field). In our scheme the term of the S matrix corresponding to this diagram
has the form

— iV (x)Zo(x— y)¥(y):

Sh(x—y)= peP==SE( p)

1
(27)°*

where

: 2 8(.__ 1272
Sh(p )= lim — fd“kVO( k)

§-0 (29 ) —k?—ie
mz—(p—k)2+(ﬁ—/5)(ﬁ—/3+m
Xﬁ*‘ 2 #m k)Yl
m[mz—(p—k) —ie] Val=(p = ’r)
(36)

Passing to the Euclidean metric in (36) and substituting representation (24b)
into it in a way similar to that used in the previous section it is easy to
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obtain the following expression:

) n
s =S {ae L 5 (1-8)| %~ 20- B 5+ 2]5,,
1 - p*
——B(l—B)‘3H+(1— )—"I
2 . m 2
where
B:B‘LB’ ﬁ:B pp, BOPO Bp
G — 272 LZ_ _i ~Barn—iw . 0(§) 2;2\¢
Yao .u'b(m [ ’mz)_ 2if_,3u¢h+ioo d§5inﬂf(m[ )
1 _'Yu+h_i°° U("I) 71 ( p?_ )
X—, nl a, § N
2i /“Yu+h+ioo ( )'H, 4§ 2
5 $+n+b
pPP\_T(=b=¢=m) 1, :+a( P’ )
H M= | =——— | d 1— 1——
H.h(§ n 2) r(l_g) -/(; uu ( u) mzu
Here
%b< a+b+Ya+b<#, a,b=0.1,2

We calculate the electromagnetic correction to the boson mass in the two
limits m?/? <1 and m?/2>1. We have (i) for m?/> <1,

3a m
Emzlz fors =0
St(m)= B(B =
_ams fors=1
4 g ors=

and (ii) for m?/?>>1, i.e., the classical limit,

. —y—i —1/2 n) 1
r(m) 2ml 2i f—y+ioo sin’m 1 mi?
(1/2<y<l)

for s =0,1
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Here

m (~Bie v(n)v(=1—7) 22
6= dpg—————=I'(1—9)|1+0( “l
2i f—B+loo k sin®my ( 71)[ (logm )]

0<g<l

The vertex diagram and the statistical characteristics for the bosons
were investigated by Dineykhan et al. (1977) within the framework of the
stochastic space and by Efimov and Namsrai (1975) in the nonlocal theory.
Here we shall not write out these results because they are quite cumbersome.

It is verified easily that in the case of the electrodynamics of particles
with spins O and 1 gauge invariance holds automatically by construction.

7. THE CONSTRUCTION OF GAUGE-INVARIANT
FOUR-FERMION THEORY OF WEAK INTERACTIONS IN
THE STOCHASTIC SPACE

7.1. Introduction. The four-fermion theory (Fermi theory) plays, and it
seems, will play a fundamental role in the development of the theory of
weak interactions. The four-fermion V-A interaction describes in a unified
way some weak decays of leptons and fermions. Earlier success of this
theory in the explanation of muon and S decays has given a certain hope
that within the framework of this theory weak processes might be described
at least in the low-energy domain.

However, in four-fermion theory one meets the well-known difficulty
caused by the ultraviolet divergences and the renormalization problem. For
this reason, calculations of higher-order corrections in the perturbation
series in coupling constant G are difficult. Notice that a similar situation
occurs in the theory with intermediate vector bosons.

Ways of eliminating these difficulties were proposed in different mod-
els which can be classified in two groups. One of them is connected with
some schemes and approaches aimed at constructing a new theory of weak
interactions within the framework of gauge theory [especially, the unified
theory of weak and electromagnetic interactions, i.e., the standard model of
electroweak interactions due to Weinberg (1967) and Salam (1968) (see
Glashow, 1980).] The other approach assumes a modification of the usual
theory of weak interactions based on the analysis of fundamental principles
(causality condition, locality and properties of geometry on small scale, etc.)
of modern local quantum field theory at small distances (see, for example,
Alebastrov et al., 1973; Kadyshevsky, 1980; Efimov and Seltser, 1971;
Arbuzov, 1975).
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The description of weak, electromagnetic, and also strong interactions
within the quark model framework based on gauge theories with a sponta-
neously broken symmetry obviously represents a qualitatively new step in
understanding elementary particle phenomenon and their internal structure.

However, at the present time it is impossible to say that the first
approach is generally accepted and that the second way in the development
of elementary particle theory loses its significance.

Maybe that usefulness of the old (free of the above-mentioned difficul-
ties) and of new weak interaction theories is revealed mainly in two limiting
cases. Indeed, when the energy is not high enough for the production of
intermediate particles (for example, W =, Z°, Higgs bosons, etc.) which are
necessary in gauge theories, i.e., if the energy is small with respect to some
limiting value E,, the weak processes must be described by the four-fermion
theory. Contrarywise, when E = E, the gauge theory will play an important
role in weak processes. Here E, is the value of energy at which new particles
W=, Z°, etc. will be produced, if they exist. Of course, there has to exist a
reasonable correspondence of both the theories at £ ~ E|.

In the language of distance it means that starting from some small scale
1, ~1/E, the growth of weak-processes cross section must be compensated
by corrections given by the intermediate bosons. It is very interesting to
show, at least approximately, the energy value E, (or the distance /, ).

It seems that in view of this aim, the investigation of four-fermion
theory within the framework of the second approach is undoubtly interest-
ing and can give a new information about weak interactions. For example, it
is quite possible that on the basis of this type investigations a value of /, (or
E,) may be obtained. Moreover, recently great attention has been paid to
the low-energy weak interactions. This is connected with the problem of
neutrino oscillations and its consequences, and of the proton instability in
the grand unified theories (see, for example, Fiorini, 1979).

This section is devoted to construction of a gauge-invariant theory of
weak and electromagnetic interactions of leptons in the stochastic space
R,(%) and to calculations of “weak” corrections to the AMM of leptons
and to the Lamb shift within the framework of this theory. In this case the
investigation of the terms of the S matrix is carried out by the methods
elaborated in previous sections.

Notice that in the stochastic (nonlocal) theory the concept of stochas-
ticity (locality breaking) is characterized not only by the length /, ~1/E,,
but also by a form of the distributions w(b% /1?) (2) (the shape of a form
factor or of potential) at small distances. It seems to us that in real physical
processes apart from the value of elementary length an important role may
be played by the form factors of the theory. This occurred especially in the
study of the decay K - p*p~ and of the mass difference Am(K? — K2) in
our scheme.
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In the last cases our analysis of experimental data on weak processes
within the discussed model shows that the elementary length of weak
interactions is of an order of /, ~107'® cm. and that the unitary limit is
reached at energies E, ~ 100-200 GeV depending on the choice of the form
factor. Notice that it is quite possible that at these energies the unification
of electromagnetic and weak interactions, which are described by the
standard model of Weinberg and Salam, is achieved.

7.2. Gauge Invariance for the § Matrix in the Nonlocal Theory of Weak
Interactions. The expansion of the S matrix in powers of the normally
ordered operators of the electromagnetic field 4,(x) and the lepton fields
¥(x) has the form

S= EImimfd‘*kl...fd“k"fd“pl...fd‘* mfd441"'
n,m,

X [dqEy, (ks Prsee P 1o 8 Ay (R))- - 4, (k)

X¥(p) - ¥(p)¥Y(q) - ¥(q): (i=epr.y)  (37)

The requirement of gauge invariance means that the coefficient functions

F, . ,(---) in the expansion (37) satisfy the following conditions:
ku,ﬁt.n-»-#,v---#n(' -+)=0
kn.-k#,F;u-u.-u..----#,'-n-#n(' -+)=0 (38)

Let us remark that each of the conditions (38) is fulfilled when other
momenta in the function £,  ,(---) are on the mass shell. The series of
the perturbation theory contains three types of diagrams: diagrams with
purely weak vertices, with weak and electromagnetic, and with purely
electromagnetic vertices. Investigation of the last type of diagrams will not
be carried out here because they represent gauge-invariant quantum elec-
trodynamics constructed by us 'in Section 5. Proof of the fulfilment of
condition (38) for the diagrams with mixed weak and electromagnetic
vertices goes simply. Indeed, in the considered four-fermion theory of weak
interactions the Ward identity

9Zx(p) —

_ TR
app rp, (p’O)
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T
s N\
I \

a)

Fig. 4.

is valid since it is a consequence of the identities (17) and (10) at k£ =0: By
definition:

du(k)|kﬁoF(q)=%F(q>

Here S z(p) and I.“#R( P, q) correspond to the diagrams of the self-energy
(Figure 4a) and the vertex (Figure 4b), respectively.

Proof of the gauge invariance in the form (38) in the series of perturba-
tion theory is quite simple and is based on the identity (11). The diagrams of
closed loops constructed by propagators of charged leptons are gauge
invariant due to the d operation.

Now let us proceed to investigate these diagrams (see, for example, the
diagrams shown in Figure 5) in the series of perturbation theory. First
consider the diagram represented in Figure 5a. In the momentum represen-
tation the term of the S matrix corresponding to this diagram is given by the
following expression

(2) _& S 2 Lk 39
F2(k) f(zw)fpp{f“ (p.k)} (39)

where
12 =d,(k)Sp(p)O,

~, //
rd
o - ~ <
~ // . ~ _—— s —— —
-~
s
- \ / N - / \

e N / \ A e \

\ / \ N / \

AN

a) b) c) d)

Fig. 5.
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Taking into account the formulas (11) and (17) we get
d,(k)Sp( §) = Sp( p+ k)= Sa( $) (40)
From this it is easily seen that
k,ED(k)=0

By using the main property (40) for the 4 operation we can easily prove
the fulfillment of the gauge invariance condition for the other matrix
elements of closed charged loops, shown in Figure 5. The matrix element
corresponding to Figure 5b is given by

£ p, k) =d,(k)[Sa 5+ )0,S:(2)04] (41)

where p, k are the external momenta, ¢ is the internal momentum over
which one carries out integration. Making use of the identity (40) we obtain

ky 0y =[Sa(p+ 4+ k)= Sp(p+3)]0.Sx(9) 0 + Sp( p+ K+ §)0, (42)
X [Sp(g+k)—Sx()]0p =
~ Sx( 5+ )0, Sx(§)0s + Si( p+ 3+ k)0, Sp(d+ k)0
Elementary integration over g gives the following identity:
k,E(p,k)=0

Now we consider the fourth-order diagrams (Figure 5c). In this case the
terms of types £ and £ have the form

19 (k. q,,9,)=d,(k)[Sr(8)0,Sa(d +8,)0sSk(§+ 4~ 4,)0)]

From this we obtain easily
ey 3 = [Sa(@+ K) = Sa()] 0uSk(2+ 3) O Se(4 + 41 = 80,

+SR(4 +l€)0a[SR(‘7+C?] + E)—SR(q + ‘71)]OBSR(‘7 +4,— ‘72)0y

—

X[Sa(q+4—a+K)=Se(a+ 3, )]0,
== Sp(§)0,Sp(§+ §1)0pSp(§+ 4. — 4,)0,

+ Sp(§+K)0,Sx(q+ 41+ K)OpSa(§+ 41— 4, +K)O,
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In the second term of this expression, the substitution ¢+ k — ¢ and
integration over d‘q give
kuEahy =0

Here finally let us consider one more diagram, shown in Figure 5d. The
term f%2(k, k,, p) acquires the form

1838 =, (k) {d, (k) [ 0.Sk( 5 + 3)0pSa(9)]} (43)
From this we see that due to equality (42) we obtain the following identity:

klukzyﬁg&? =0

Thus, the algebraic relations we have found show that within our model the
terms of the S matrix satisfy the condition of gauge invariance in the form
(38) in each perturbation order.

7.3. Calculation of the “Weak” Corrections to the AMM of the Leptons
and to the Lamb Shift. In view of testing locality of the quantum theory,
calculation of corrections due to the weak interactions to the quantum
electrodynamical processes is always very interesting. In the case of an
actual discrepancy between the local quantum electrodynamics and an
experiment, which is to be expected at very high energies, the “weak”
corrections would contain, however, just the breakdown of QED. From this
the conclusion may be drawn that local QED can be violated, and weak and
electromagnetic forces can be equal in magnitude. It is quite possible that in
this domain of energies the process of unification of weak and electromag-
netic interactions starts.

The present section is devoted to the calculation of corrections to the
AMM of the leptons, and to the Lamb shift, and further to establishment of
the lower bound for the parameter / which characterizes a domain of
unification of weak and electromagnetic interactions.

7.3.1. The AMM of Leptons. In the lowest order of G the corrections to
the anomaly of leptons are given by two types of diagrams (Figure 6a)
corresponding to both the diagonal and nondiagonal weak interactions, i.e.,
to two types of terms of the interaction Lagrangian £, in (22). Within the
framework of the nonlocal theory the diagrams of such a type were
discussed in detail by Efimov et al. (1973). Therefore we shall not calculate
in detail, and give only the main result. Hence in the stochastic theory the
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a) b)

Fig. 6.

terms corresponding to these diagrams may be rewritten in the form

2
£(p.q)= lim (G < [0S 5+ U RIS 5+ K10,
2

S=Sx, Jj=e,n (44)
where the symbol § means the intermediate regularization procedure used
above. Here p and p’ are the external momenta of the leptons, p'=p +g¢q
and

~ " A " ar a Y
S(p+k)U(p,k)S(p+k)=—8(p+k)—"—=
m;,—p—k
gy, +2p 1
+V, (=(p'+ k) 12)=V, (—(p+k)*1?) p_OH —
[, ' ]qz+2(p~q) m;—p—k

(45)

The function N,g(k) corresponds to the neutrino loop and is given by (see
below Section 8.2)

1 aTim U(f) 12k ¢ 1 —B—io  v(n)
Nog(k) = Py 21,/‘_0(,,_,0o sm77§( k%) 2i.[_B+,.m dnsinvrn
©O<a<l) O<B<l)
X(_Isz)nr(2+§')F(2+ﬂ) 1

(=T (1—n) T(4+{+mn)

X[ =2k kg T(—1 =)~ gagh*(2+n+§)T(—=1=1—¢)]
(46a)
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Here Re(—n—{)=a+B<0 and Re(—1—9n—{)=a+B—1<0 in first

and second terms of (46a), respectively. Substituting (45) and (46a) into

(44), integrating over d*k, and assuming m?/> <1, we get the terms giving

the contribution of weak interactions to the AMM of the leptons:
o A i »
Lg) =T p,q) przpirzpr = Zm, % F(q%)

al = F(0)=— B

! ()2

Here the quantity B is given by

B:E —B+ioo Sln'ﬂ”n 20

m (~B—ico , v(n) 1 r—a—ic  0({) T(2+¢)T(2+7)
f a _f-a+,-ood sinw{ T(1—{)T(1—n)
W o(=1=n=¢) T(=n=¢) | 1

T(4+{+7n) sina(n+{) 5 [+ 5)(1+9+5)+28]

_2+7+¢
60

2+n+¢

{8+ (n+O)[10+17(n+ ) +2(n+5)] |+ —

X {M 47)

60(4+71+¢) [—80+28(’7+§)+21(n+§)2+(n+§)3]}

An integral of the type (47) will be investigated in Sections 8.2 and 8.3
in detail (see also Appendix A). Shifting in turn the contour of integration
to the right we can reduce this integral to the double series. The result of
numerical calculations gives B~ 3 for the form factor v,.

Thus, we suppose, as before, that the obtained “weak” contribution
(46b) is of an order not greater than the experimental error. This makes it
possible to establish the following restrictions for the parameter /:

[Z3X107" cm fora,

I=1.1x107"7 cm fora,

7.3.2. The Lamb Shift of Atomic Levels. If we restrict ourselves to an
order of eG?, as shown by Efimov et al. (1973), the dominant contribution
to the Lamb shift due to weak interactions comes from the graphs (Figure
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6b). The terms of the S matrix corresponding to these diagrams may be
presented in the form

SCA(x, y)=—i: A, (), (x— y)4,(y):

where

IT,,(x)= qe'*1L,,(q)

1
(2m)*
Calculating H ,(g) we made use of expressions (43) and (46a) for

SR (p.g, k) and N ,a(k), respectively. Thus, in the stochastic theory the
quantity H ,(q) has the form

f,40)= 5 [[atpa ko £53p K Ngth)
7f
e’G?
“aeep P

x{[(25(5+ R)[d(~ )5 ( 5+ £ +4)]

xS(p+k+g)[d(q)s™(p k)]S(ﬁ+ )0,S( 5)

= S(p+E){d(—)[d(q)s7(p+Kk)]}S(p+K)0,S(p)
~S(p+£)0,S(p){d, (- q)[d<q)s '(p)]}S(p
+28(p+K)[d(9)ST(p+Ek—3)|S(p+Kk—2)0.5(p—4)

x[d,(~q)s7'($)]S(5)+25(p+ k)
x0,8(p)[d,(—q)$™(p+4)]
X S(p+9)[d,(4)S7(5)]S(5))] 0aN.a()]

Passing to the Euclidean metrics and using the generalization of Feynman’s
parametrization we get after some calculations

11,,(¢9)=(9,9, — %,,)11(¢?)
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where
) _
H(g")=—3-T(=1=n=p=¢ =) [d'p(p+q)[a’ +2(p )]

m2 l4+54+{+p+A
X{[T_Lx+m2(1~y)—(p+q)z]

2 l+np+{+p+A
—[f“_§+m2(1—y)—p2] } (48)

Here

_ oG 1 rmaiee , 0(§) 2;1 —g-iee0(n)
8= 8S 2i.[_a+,-0O d§5mw§ 21[ B +ioo dnsinm][

1 —y— i o(p) —x —Jfoo U(}\ 2A
X—27f—7+ioo dpSanp 2p2"[-x+lw d>\ i 1

r+)r2+7y) 1
T(4+7+)T(1=)I(1—n)I(1-p) T(1=NI(=2=n—§—p)

!
X [[ dxdy(1= )"y 1o [30(= 1= —{) =21 (=2~ 7 )
0
+xI(=2-n—-§)]T(-2=n—{~»)
+x[(=2=n=)T(—1-n—¢—p)}x* " (1~ x)"
Using the identity (28), we obtain
1 1
M(q?)=—3-8-T(=n=§=X=p) [ dz [d*p(p+q

2 p+i+A+p
X[%+m2(1—Y)—(p+42)2—q22(1—2)]

2+q+¢+p+A
6/01(12[”2}) +m?*(1—y)— qz(l—z)]

< {-2r(=3-2—¢ - N[22 =)= g0

+g* (1= 2P T(=2=n - p— M)}
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The corrections to atomic levels produced by the nuclear field vacuum
polarization are given by the following formula:

824 2.2 2
VA AW (49)

3
7*=0

ny dq?

where

The calculation of dT1(q?)/dq>
we get

q2=0 18 performed easily. Assuming m}/? <1,

d (50)

where

3 , e o
d 5 [lf—y,—tood v(x;) 1 ]U( 2—x) = Xy = X3)

== o X, X
4B =20/ v sinmx; T(1—x;) | sinm(x,+x, +x3)

T2+ x,)T(2+ x,)T(1+ x;)

2 x; = x)T(=2— x| — x, —
a7 e———— X = x) T XXy )
1 2 1 2 3

X {3[8+3(x, +x,)] + (14 x; 4 x5+ x3)[9+ x5 +3(x, + x,)] )

Substituting (50) into (49) and taking into account that m > m?, we obtain
the contribution to the Lamb shift for 25, ,, —=2P, ,, in the form

p VA
AEw(zsl/Z_z‘Pl/?.):__

5 o5 «*G?Ryd (51)
ki

where the constant d ~1 for the form factor v, (9).
The experimental value of the Lamb shift

AE.(2S,,,—2P, ,,)=(1057.912+0.011) MHz

cxp(

due to the data analyzed by Brodsky and Drell (1970), Scadron (1980), is
explained by local quantum electrodynamics. Therefore we get as above

122X107 "% cm
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8. SOME CONSEQUENCES OF NEUTRINO OSCILLATIONS
IN THE NONLOCAL THEORY

8.1. Introduction. Many papers have appeared recently in which the
problem of neutrino oscillations was considered within different approaches
(see, for example, Bilenki and Pontecorvo, 1980a,b; Bilenki et al., 1980;
Vuilleumier, 1979; Barger et al., 1980; for earlier work see the reviews of
Bilenki and Pontecorvo, 1978; Wachsmuth, 1979; Morrison, 1980; and for a
more popular presentation see Thomsen, 1980; Sutton, 1980; De Rujula and
Glashow, 1980). The possibility of neutrino oscillations was first considered
by Pontecorvo (1968): he assumed that the oscillation may appear if besides
the usual weak interaction there is another interaction which does not
conserve the lepton number. Such a picture is similar to the oscillation in
the system of neutral kaons. Pontecorvo showed that massive neutrinos
might change their identities during time evolution. A particle which is born
as an electron neutrino in a beta decay may periodically behave as if it were
a muon neutrino or a tau neutrino.

Many recent papers (see, for example, Cheng and Ling-Fong Li, 1980;
Kang et al,, 1980; Yanagida and Yoshimura, 1980, and references therein)
devoted to the problem of neutrino oscillations deal with the unified theory
of weak and electromagnetic interactions. Thus, in addition to the standard
hypothesis of lepton-quark analogy, in these works a new conjecture is
proposed that leptons, as the quarks, are mixed. In such a theory the
oscillations v, = », = », appear.

Possible indications for neutrino oscillations have been obtained in the
beam-dump experiments at CERN (De Rujula et al., 1980) and in the
experiments with reactor antineutrinos (Barger et al., 1980; Reines et al.,
1980). A number of experiments searching for neutrino oscillations stimu-
lated recently interest to the question as they seem to give some indications
for nonzero neutrino masses. A direct experiment of Lubimov and co-
workers (1980) on measuring the 7, mass from 3H decay gives the mass of
the electron neutrino as between 14 and 46 eV, and most probably to be
36=10 eV. The results of Reines et al. (1980) gave no direct implication for
the neutrino mass, although they imply that the difference in mass between
the two basis states lies in the region of 1 eV. It is worth noting that the
recent developments of grand unified models nicely accomodates finite
neutrino masses (Barbieri et al., 1980a,b; Gell-Mann et al., 1979; Georgi
and Nanopoulos, 1979; Witten, 1980).

Thus we believe that a neutrino oscillation mechanism does exist in
Nature and we will expect precise experiments on the properties of neu-
trinos.
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Our aim here is modest and consists only in considering this problem
from the viewpoint of stochasticity of space. We believe that due to the
neutrino oscillation mechanism there exist mixed states of neutrinos which
give nonorthogonality between neutrinos, say, », and »,, (v,|v,)#0 (7,
oscillation are not considered). In our previous paper (Dineykhan and
Namsrai, 1975) such a possibility was considered and it was postulated
there that the difference in behaviour between », and », is caused by internal
properties of these particles and depends of the nonlocal effects of weak
interactions. For example,

v=v,+fr=v,—(1—¢)» (52)

where f (or ¢) is some parameter which may be connected to a mixing angle
and a value of mass difference of neutrino states, and » is a massive
neutrino (basic state) which possesses properties of both the », and »,
neutrinos. In the representation (52) the transition propagator between v,
and », has the form

O (2, (x)%,()) 0y =D, ,(x~ ») (53)

where we put ), ,(x)= %, ,(x) since the » neutrino possesses the property
of »,.

If the neutrino mixing is assumed, the exotic decays u— ey, p — 3e,
K~ sper™, K] > pe, etc, are in principle, possible. Notice that these
decays are forbidden by the usual theory. These processes appear in higher
orders of the perturbation theory. The present section is devoted to the
investigation of these decays within the framework of our approach. It is
shown here that if the parameter / for the weak interactions is of an order of
/~107'% cm and if the neutrino mixing takes place, then the probability for
these decays is close to the experimental upper bounds (see, for example,
Bricman et al., 1980; Fiorini, 1979). In this review, for example, we will
consider the decays p — 3¢ and K — pe in detail.

8.2. The p - 3e Decay. Within the framework of our model of weak
interactions the probability decay is determined by diagram shown in
Figure 7a. Before we proceed to estimating corrections from these diagrams
to the probability of decays u — 3e and K? — pe, let us consider diagrams of
the type of neutrino—neutrino, neutrino-lepton, and lepton-lepton loops
(Figure 8a,b,c). Here we investigate one of these diagrams, say, the neu-
trino-lepton loop corresponding to the diagrams shown in Figure 8b. Its
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Fig. 7.

matrix element has the form

1

(277)4i

M,,(p)= /d“kSp{léOa(m+l€+ﬁ)OB}

o V= k) Vol =kt p)*P2)
—k*—ie m*—(k+p)’ —ie

After the standard calculations we have

1 1 p-p—ioo 22y
a(p)= o S L

—p+im sinw{ 2i
O<p<)
—y—io ,v(7) 2723\m 1
X dng—= ]
/_Y+ioo nsmml(m )F(l—n)l“(l—f)
(0<y<l)

] 1—x\¢ 2 n+¢
< fax(152) 1~ o)
X[(~2Pupp+ 8app?)x (1= x)T(—n—¥)
+gaﬁf(—1—n—§)(m2—pzx)(l—x)] (54)

We notice that the neutrino—neutrino loop (46a) in Section 7 is obtained by
substituting m =0 in expression (54).
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Fig. 8.

So, by definition (53) the matrix element corresponding the p —3e
decay has the form

M(uese):qb(i)”(éoau)fvaﬂ(qxe"oﬂe)

2

where N,4(q) is the neutrino—neutrino loop determined by (46a). Then the
square of the matrix element equals

2|M|2=%4[(%)(%1«3)+<kok2)<k.k3)] (s52)
spin T

where

ko=k,+ky+k,

_m =B-io o({)o(=1-%)
°= 2i/—B+ioo % sin’wt (55b)
0<g<l)

In the expression (55a) for the square of the matrix element we take into
account main terms of the order of (G2//?). After integration over phase
space of the electrons and averaging over the muon spin we have

_ 1 G4¢ZC2 5
W(u—>3e)—1—92 4147 my
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The probability branching ratio of ¢ —3e to p — ev# constitutes

W(p—3e)  G2c?

B(p—3e)= =5 = (56)
W(p—evi)  a(al)
where
2,3 for v=v,
c=41,4 for v=yp,

0.4 for v=1,

Here v, v,, and v, are determined by formulas (9), (27), and (31),
respectively, and |¢|<0.055 (see Lee et al., 1977). Assuming ¢~ 1072 and
[~2X107 "¢ cm we get

1.35x107® for v,
B(p—3e)s44.9%x107° for v, (57)
3.9%x1071° for v,

8.3. The K — pe Decay. In the second order in G the decay K} — pe
is described by the diagram in Figure 7b. The term of the § matrix
corresponding to this diagram can be rewritten in the form

i\[ifmw\( ‘Q‘) B(p_)T(p_.q)e(p, )p.cosb,sind, (58)

V2

where

__9 P
Mp-0)= o Jd*kig(k)o,

my+k+p, my+k—p_

Ys 0,
my—(k+p, ) —ic my—(k—p_)Y—ie '

XV, (~(k+p VP2W(~(k=p Y1?)  (my~m,)

Here II;4(k) corresponds to the neutrino-nucleon loop considered in
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Section 8.2. The hadron current is chosen in the Cabibbo form. After
tedious but elementary calculations we get

. 1
Mp_,qg)=—myg(l—vy.)——4A4
(p-.q) Na(1—vs) s

where

_m o pmv=im, o(y) 1 p=B-ieo  0(§) 1 roa—ie,  v(n)
4 Zif ; dysinvry 2i/.B+,wd§sinvr§ Zi/ ; dnsinm]

—y+tiom —a+ion

L A(=1=n=¢—y) TE+T@+n)I(~1=7¢)
sina(y+n+¢) T(—m)I(1-§TG+n+5)

(59)

As above, after displacement of the contours of integration to the right we
obtain (see Appendix A)

_ 1 —B—icc D({) 1
A=2 [ Gt TTOETD)

X

n

[o(n)o(—1=n—=¢)—v(n="{)o(—1—n)] (60)

0

it V)8

Now the matrix elements (58) acquires the form

g [E(p_)e(p,)]

2
M=iﬁfKNA(7_(2z-) cosOsm0¢ o

/

and its square is

|M|2:2m§<(1—— A%’

x0|E

where

G? m,my
8= fxna o > cos @ sm0¢ 6?2

Integration of the decay probability over the phase space of two leptons
gives

2

W(K,?—»pe)Z%(l——:—;
k

2

$2G* fiun Mamiy
O gt OV

A’cos?6_sin’




174 Namsrai and Dineykhan

where sinf,=0.23, f2y, /4m=10.0=2.8 (see, for example, Ebel, 1970;
Nagels et al., 1976), ¢ ~1072, and /~2X107'¢ cm;

—18 for v=u,
A={-27x10"" for v=v, (62)
—2.1072 for v=v,

Thus, the branching ratio of this exotic decay in our model is

1.2%1078 for v=v

e) _
B=—————"<{14X107" for v=v,

W(K? - all) ,
74Xx107! for v=vo,

We see that the exotic decays p—3e and K} — pe depend strongly
from the form factors of the nonlocal theory. Our results together with the
calculations by Cheng and Ling-Fong Li (1977) and the experimental upper
bounds [Bricman et al., 1980 (Particle Data Group)] are summarized in
Table 1. These numerical calculations are presented for a purely illustrative
purpose. These are important in a sense that they permit one to estimate a
parameter of mixing and the value of ¢lementary length /. The introduced
parameter ¢ is connected to the mixing angle and the mass difference of
neutrinos », and », (or heavy leptons N, and N,) of other models of weak
interactions by the formula

¢~sinpcospAm;  (i=v, N;)

TABLE1
Our Results of Experimental
Process calculations Cheng and Li upper limits
p—3e 1.3%x1078 v=uo, 10712 1.9%107°
49X%107° v=uv,
3.9%10710 v=uv,
K)—pe 1.2x1078 v =y, 10710 2X107°
1.4x 10710 v=uv,
7.4%10713 v=uv,
K)—p*tu~ 1.2%x107¢ v=0p, — 9.1x1.9)x107°
6.7%107° V=0,
Am(KP—KQ)  5.10"hsec™’  v=u, — 0.5%10'0h sec™"

L10hsec™  o=v,
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9. NEUTRINO ELECTROMAGNETIC PROPERTIES IN
NONLOCAL (STOCHASTIC) THEORY OF WEAK
INTERACTIONS

In the last years great attention has been paid to the physical properties
of neutrinos. This is connected with the problem of neutrino oscillations
and its mass, and astrophysical consequences (Faver et al., 1978; Schramm,
1979; Schramm and Steigman, 1980; this problem has been discussed by
many authors at the Neutrino 1979 Conference), and also with the rapid
development of neutrino experiments carried out at CERN, Caltech-FNAL,
Serpukhov, etc. (see, for example, Busser, 1980; Winter, 1979; Baltay, 1979;
Arbuzov, 1975).

As usual, the neutrino is considered as a weak-interacting particle with
zero mass and without an electric charge. Therefore among the electromag-
netic characteristics of neutrinos the only nonvanishing quantity is its
charged radius r,. Possible experiments on measuring the charge radius of
the neutrinos have been pointed out by Andryushin et al., 1971.

However, it seems that the neutrino mass is not zero (see Section 8).
Then the neutrino may possess the magnetic moment a,. Recently, magnetic
moment of a massive neutrino has been discussed by Fujikawa and Shrock
(1980).

Starting, with the analysis of experimental data on inclusive reactions
v(#)+ N - »(7)+anything and », —e elastic scattering, Bardin and
Mogilevski (1974), Kim et al. (1974), and Arbuzov (1974) have investigated
the electromagnetic properties of neutrinos and calculated the correction to
the cross sections of these reactions due to Feynman diagrams involved in
one-photon exchange, and obtained restriction on the charged radius and
magnetic moment of the neutrino.

The contribution due to the one-photon exchange calculated by these
authors is called electromagnetic, although, as is known, the charged radius
and magnetic moment of the neutrino must appear due to effects of the
weak interactions. The calculation of these quantities in the usual theory of
weak interactions meets difficulties because of divergences in the S-matrix
elements.

The present section is devoted to the calculation of contributions to 7,
and a, within the framework of our approach formulated in this paper. In
Feynman diagrams of the order eG? giving the corrections to r, and a, there
are closed loops constructed by propagators of the charged leptons and
neutrinos for calculations of which it is necessary to apply the method of the
stochastic theory.

In the nonlocal (stochastic) theory of weak interactions the electromag-
netic interaction of the neutrino, say, the muon one, in the lowest order of G
is given by the following Feynman diagrams (Figure 9):
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The matrix elements of the vertex functions corresponding to the
diagrams shown in Figure 9 between two-neutrino states which are used for
the calculations of the electromagnetic form factors of neutrino have the
following general structure:

M= ieav( pl){YpFl(q2)+ ioypquZ(qz)}uv(p) (63)
where
1 1 ,
F(a*)=¢r'a’,  F)=5—a,, q=p'—p

e

Here r? is the mean-square charged radius of the neutrino and a, is its
magnetic moment in the units of electron Bohr magnetons.

In order to calculate the contributions from the diagrams shown in
Figure 9 to r, and a, we shall investigate them separately. First, let us
consider the lepton loop (Figure 9a). The term for the S-matrix correspond-
ing to this diagram has the form

G _ .,
Mlzleﬁuv(p )Oauv(p)Kaﬁ(q)AB(q) (64)
where the K 4(g) in the stochastic theory is given by

L S(k+4)Us(g. k)S(K))
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Here
Up(k,q)=—dg(q)S™'(K)

On the other hand, taking into account the identity (17) for the 4 operation
we have

K.a(9)= / Sp (0.d4(9)5(K)}
By definition
R 1 V. (— k%) 1
d S(k)= = = — + =
ﬁ(‘]) (k) m—k—(}YB m—k m—k—§

><[V(—(k+q)212)——V(—k212)]%

After some elementary calculations we obtain the gauge-invariant
expression for K ,4(q):

1 -
K.5(q)= ﬁ(qaqﬁ—ngup)lf(qz)

where
S0 oy 1 —a—loo D({) m2I? F(—g‘)
K(q )_—E/_a+ioo sin f( )gr(]—f)

O<a<l)

2 e
Xf]dx(l—x)l_gx[l— q—zx(l—x)]
0 m
Making use of the identity
I'(—¢)=—n/sina{T(1+¢)

we have

Sr 9y _ W [—a—iow U(f) 1
K(q )_2_i/—a+ioo df [SIDW§]2 I‘(l—{)F(l+§)

1 2 d
X/(; dx(l—x)l—gx(l-— %x(l—x))
m? —qzx(l—x)]

=fldx(1—x)x v’(0)+log m*I* +log >
0 m*(1—x)
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Here
T(2)T(2)

T - v =

'/(;ldxx(l —x)log(1—x)=—=—"¢

The first diagram considered gives a contribution to the mean-square
radius of the neutrino only:

BF(g?
lF«s——‘%—) - & L 2—0(0)—logml (65)
aq ?=0 \/‘ 2o
Assuming, as above, / ~2X 10~ 1 cm we get
1X107% cm? for v=uy,
rl=10.9%x10"% cm? for v=v,
1.1X1073 cm? for v=v,

We see that the contribution from the diagram (Figure 9a) to the mean-
square radius of the neutrino is of the order of 1073 cm?.

Now we turn to discussion of the vertex diagrams. There are only eight
diagrams for each neutrino v, (i = e, ). Among them there exist diagrams of
different structure, for example, diagrams, shown in Figure 8b-e with the
calculating of which we shall start. The terms for the S matrix correspond-
ing to these diagrams are

T\,(p,q)=N-0,[d,(— q)SW(K,+ p)]

X 0,Sp{ 0,8 (k) + k,) 055" (K,)}
Dp( P, q)=N-0,S™(k, + p)

X 0pSp{ 0,[d,(— q)S (K, +K,)] 0,5 (£, — 7)) (66)
(P, )= N-0,5"(k,— )

X 0pSp{0,[ d,(— q)SO(K,+ K,)]| 08 (£, + 5))
I"4p(p,q)=N~0aS(")(k )0sSp{ 0,5k, + k5) O d,(— 9)SW(k, + p)]}

e

@n)'i? (2n)i

respectively.
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Let us consider the first expression of (66). We are interested in those
terms only which give contributions to 7, and a, in the limit g% —»0. The
structure of the type (63) is obtained by the usual way. After tedious
calculations we have

11 o
rlp(p’ q) = m 3 [quzFl(l) +lopaq vaZ(I)] (67)

where

FO=p(5,m) (23420 +2)I(—1—n =)+ (== [$ -1+ 9 +{)]}

Fz"’=9(§,n)F(—n—§)[—H—;j—g(1+2n+2§)—13—6'n—6§

Here

P(f,ﬂ)z%f_ﬁ_iwdfv(f) 1/_Y—iood o(n) v(—1—9-¢)

rQ2+7)r2+¢) 1
F(1—m)I(1-¢) T@+n+§)

Similar calculations give the following structures for I, ( p, g) and I, ,( p, q):

11 o
167)’4[2 g [quzFl(d) + lopuq va2(4)] (68)

T(p.a)=
where
Fl‘4)=p(§,n){[—2+2(l+n+§)]I’(—n—§')‘—10r(—l—n—{)}
F®=p(¢,m)[—10=17(1+ 5+ {) +4(1+ 9+’ T(= 5 =)

and

[v,4°F@ + ig,,q°m, E?] (69)

1
sz(p, q) = 1677412
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Here
FP=p({,m)T(1—9—%)
3+ x x—1 2+x 524+ x
X{(l—n)(Hn)[ 6 ~aa Ot¥73 }

1 [24¢( 7 5 53+x
+2—n[1+n( s 6% T3 )

1
eyl

_(1—x)(4+x)+l3
12 31 3(3—19) 1+
1 1—x 524x 1
+(1-n)(2—n)[ 3 ‘51+n(3+")]+(z~n><3—n)
3+x( 41 25 2+¢ 3 53+x
X[Hn(‘?"e"‘)*m(“l‘z”z - )
+(2+x)(1—61-+§x) @2- Qg“x)} (l—n)n(Z—n)
X{ ; x)+(2+x)(—+—— % {]
1 22+§‘
A mG—m 3 1+g T
2+x 3+x n

3 T+n (2-m)(3-m)

o533 2554
2 p(§,n)F(1-n—§)[
6x(1—n*)(2—n)

20x(5x +6+x2)+9n(1—7n)+29x*(1—x)

+18x71(1—1)
+ax2(¢—n) —8xn?(1+ x) —4n>x (1 + x)
—Txn*(x+n)— n2x2(3+2§)]

(x=79+%)
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It is seen easily that by substitution of the variables of integration the
third term can be transformed to the second term of the expression (66).
Thus, in our case of g2 —»0 we get

G,(p.q)=T5,(p.q)

Now we carry out the numerical calculations for the concrete form of
the function v({), say, for v, which is determined by (9). The results of a
displacement of the contours of integration in (67)—(69) give

FV=-0.18, F{"=2.56
F®=-0.28, E%=6.7 (70)
F»=-0.05, FP =107
Finally, we shall consider the expressions (67), (68), and (69) together with
(70). Then
M, =8(T,, +20,, +T,,) = 8[v,F(¢?) +io,uqm,F(q%)]  (71)

where
. G?
RO)= (241 L), 8=ies
F(q?)= R,+2R,+R
l(q ) 16 412( )
Here
fi=EN0)=2.56/3,  f,=F®(0)=1.07
fLi=§FP(0)=1.1
R,=4(—0.18), R,=%(—-028), R,=-0.05
Therefore

’7u_<’2v>_ F(q*)G*

GZ
a, =4m,,jmeTF2(0), Y, =V,,,

in the units of electron Bohr magneton.
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The recent experiments and the analysis of the data [see, for example,
Bardin and Mogilevski, 1974; Kim et al., 1974; Arbuzov, 1974; Daum et al.,
1978; Bricman et al., 1980 (Particle Group Data)] establish the following
restrictions for a,, (r?), m,, and m,

la,|=1077, m, 50.57 MeV
(r’y<107'em?,  m, S6X107° MeV
Then, our result gives the following restrictions:
|a, |S2x107"
la, |S1.75X 107"
and

(rHs1x107¥ em?

in the assumption /~2X107'® cm. If (14<m, <46) eV due to Lubimov et
al. (1980), then

4X107° 5la, |<1.34x 107"

We notice that in our model the vertex diagrams, shown in Figure 9b-e,
give small contributions to (r?) of an order (10737-1073¥) cm? with respect
to the diagram 9a.

10. STUDIES OF THE DECAY K} > p*p~ AND K?- AND
K2-MESON MASS DIFFERENCE WITHIN THE NONLOCAL
(STOCHASTIC) THEORY OF WEAK INTERACTIONS

10.1. Introduction. Some time ago the rare decay K — p*p~ has been
observed [see Bricman et al. (Particle Data Group), 1980], branching ratio
of which coincides, in order of magnitude, with the unitary limit (Sehgal,
1969; Quigg and Jackson, 1968)

WKL —pu)
B(K?—>utu )= L =6X107°

This process occurs essentially because of electromagnetic interactions
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(through two-photon exchange). It is interesting to notice that the well-known
so-called GIM mechanism (the hypothesis of existence of the charm quark)
started from the investigation of this process within the standard model of
electroweak interactions (Glashow et al., 1970).

The calculation of “weak” corrections to the B(K; — u"p™) and the
mass difference of K and K mesons within the usual nonrenormalizable
theory (the four-fermion theory and the theory with intermediate bosons) of
weak interactions gives a very small value of the cutoff momentum A of an
order of few GeV. This contradicts the value of the natural cutoff A ~10% —
103 GeV for the growth of weak interactions (see, for example, loffe, 1973).

In this section we shall show the problem of suppression of the order
O(G?) in decay K —p*u~ and mass difference Am(K) — KJ) may be
solved within the framework of the stochastic (nonlocal) theory of weak
interactions without introducing the fourth quark.

In our model contributions of nonlocal interactions to the K —p*p~
and the Am(K ) — K Q) arise from the diagrams, shown in Figure 10.

10.2. The K? - p*p~ Decay. K? — p*p~ decay in the second order in

G is described by the diagram shown in Figure 10a. The corresponding term
has the form

2
M(Kl?_’.“«+ﬂ_):i‘ﬁfkm\(%) E(p_)T(p_,q)n(ps )pxcosf.sinb,

where I'(p_, q) was calculated in section 8.3. Thus the branching ratio of

Fig. 10.
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this decay is

W(KD—p*p”)

B(KP—-p"p™)= =1.74*x107° 72
(K2=uw”) w(K? —all) (72)
where
212 4 2 a2 2
0, ty— ="k _2My A%cos?f,si ZBG———mNmF S
W(KL [Tl ) 3 (1 e cos 6, sin°0, 14 128% 4

and A is given by (59) and (60). Substitution of numerical value (62) for 4
into (72) leads to the contribution

1.25Xx107¢ for v=uv,

13
6.7x107° for v=v, (73)

B(Kf—w’“u‘):{

10.3. The Mass Difference of K and K2 Mesons. Let us find now the
energy operator for the transition K, into K. A typical diagram of the
order G? giving the contribution to the Am(K 7} — KJ) is shown in Figure
10b. The expression corresponding to this diagram is

2(p)=Gsin?6,cos?0,I1 ( p)I14( p)I4( p) (74)
where
d%k - ~ . _
Ha(P):fKNAfWSP{S(k)OaS(k+P)Y5}- S=S8;
and
()= [ K sp(S(R)0,5(k+ 7))

2mr)'i

which is determined by the expression of type (54). In the case m2/? <1 the
expression obtained for II,4( p) on the mass shell of the K-meson acquires
the form

2
myg 1

—c
212 4.2
myl® 4

Mog(P)=gap (75)

where c is given by (55b).
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The calculation of functions IT ( p) (/= a, B) is similar. As a result

Jenamap; 1 r=p-iw . 0(£) 1 r—v—iw, v(n)
I(p)=KM N L PAS) el [T A1) 2
f(p) 472 2if_ﬁ+,wd s1n7r§[ 2if_y+,-°od sinvrnl

I‘(—n_g‘) ! -n — - 2 2 _ 7+
X Sam e e 0= Ik = p (=]

The contour integration gives

Hj(p)z—fKNA’Z—Iﬁ’;{o'(O)+1+logmﬁ,12+'/(;ldxlog[l— ’ii x(l—x)]
N
_m (e o(§)o(— )
2i/—/3+ioo 4 sin’w{ } (76)

Here it 1s necessary to carry out renormalization in the strong coupling
constant fyy,. After such renormalization the expression (76) acquires the
form

my p;

Llp)=-—7

fxnaP
p:fldxlog[l—p—jx(l—x)} (17)
0 m?,

Substituting (77) and (75) into (74) we obtain the following expression for
Am(KP— KD):

2 2
Am(K,“’—Kﬁ)zMngsin@Ccoszﬂrm%CL’mK (78)
2m) -
or
1102k sec™! for v=v,
Am(K2—K2)=45X10"hsec™! for v=uv, (79)
1X10"A sec™! for v=ov,

We see that in the case of our choice of form factors v, v, and v, the
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contributions (79) calculated are large with respect to the experimental value
of Am,,=0.5X10'" sec”™'. However, by some other choice of form
factors this inessential contradiction between the theoretical caiculations
and experimental data for Am(K?— KJ) in our model may be easily
eliminated. Table I presents the contributions calculated within the nonlocal
theory and experimental data on K2 —pu*u~ and the mass difference
Am(K} — KQ) for different form factors of the theory. It should be noticed
that in the real physical processes, apart from the value of elementary
length, an important role may be played by the form factor of the theory.

Therefore, the problem of suppression of rare decays (K2 —p*u~,
K* > atvp, etc.) connected with the neutral currents AS=1 and also
calculations of the physical quantities of the order G2 (for example, the
mass difference of X and K mesons) may be solved within the framework
of the nonlocal (stochastic) theory of quantized fields.

11. APPENDIX A. CALCULATION OF THE CONTOUR
INTEGRAL

In this appendix we give the method of calculation of the contour
integral, say, for example,

T2y osinmy 2id gy sinm 2iJ_ 4400 SNy
O<a,.B.y<h

o(=1-n—y-—-) TR+HIQ2+n) I'(=1—9—¢)
sinm(y+n+{) T(1—9)I(1-¢) TG+9+§)

4 'rrf—y—iood Mi/—ﬁ—m dfi(ﬁif_a_iwd o(n)

(A1)

First we displace the contour y to the right. Then the poles will appear at
points ¥y =0,1,2,3,... and y=n—n—¢ (n=0,1,2,...). In the first case
(y=0,1,2,...) it is necessary to displace one of the other contours, say, 8
contour. The calculations of residues at points { =0,1,2,... and {=N—n
(N=0,1,...) give

T [—a—ix 0(77) 1 S
A:2_. d vlk)o(—1—k—
2i f_a+,-°o T’sinz'rr'q 7(1+7)(2+ 1) /EO kel "

(A2)

After similar calculations of residues at points { =0,1,2,... and{ =N —qin
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the second case (y =n—n—{) we get

T —a-ion v(n) 1 e
A=—2=— d vlk—n)o(—1—k
2i /—a+foo Vi n(1+ )2+ 7) Eo (=)ol )
(A3)
We unify now the expressions (A2) and (A3). Then
27 [—a—ix D(’r’) 1
A=— d
2i /—a+iw nsinzwn 7(1+7)(2+7)
X X [o(k)o(=1—k—n)=ov(k—n)o(—=1-k)]  (A4)
k=0

The last integral (A4) is calculated easily for the concrete form of the form
factor of the theory. For example, let

v=10,=2"*%/T(3+2)

Then
S [o(k)o(~1—k—n)— v(k = 1)o(~ 1= K)]
k=0
:2‘2"[ 1 + 1
F3)T(1-27n) T(5)I(—1—29)
+ ] + PRP— ——1
I(7)L(—3—27) I'(3—29)
and
_ 1 —a— i 1
A ~42" f—a+ioo an sinry[(3+27)
1+2q 1+2q
X{_ TG3—2n)(1+n)(2+1) "

12(14+7)(2+7)T(1—27)

x[1+ (3+2n1)5(1+n)]}
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After some calculations of residues at points 7 =0,1,2,... we get

q=_B L 12 [1+(3+2k])5(1+k)}
45 12,2 ak(k+ 12+ k)

L ! }~—o.z7
8,2, k(1—k))(1—2k)(1+ k)(2+ k)

12. CONCLUSION

In this paper we have proposed a scheme for constructing a gauge-
invariant nonlocal theory of four-fermion weak and electromagnetic interac-
tions with the use of notion of the stochastic space. The main attention was
paid to the investigations of the low-energy processes and to the proof of
gauge invariance for the S matrix in each order of the perturbation series. In
our case the S matrix obtained by the hypothesis of the stochastic space
satisfies the fundamental principles of quantum field theory: Lorentz co-
variance, unitarity, causality, and gauge invariance.

The nonlocal corrections to the AMM of leptons and to the Lamb shift
are calculated, and restrictions on the parameter of nonlocality (the elemen-
tary length /) are obtained. Also some consequences of neutrino oscillations
and the electromagnetic properties of neutrinos are considered.

We believe that within our scheme all low-energy electromagnetic and
“weak” processes may be described without contradiction with the experi-
mental data. In our model, apart from the elementary length there exists a
functional arbitrariness connected with the choice of a form of weak and
electromagnetic potentials at small distances. This situation allows us to
interpret our approach as a phenomenological scheme having unknown
parameters in the theory. Therefore our model belongs to the second-class
approaches mentioned in Section 1 of this review. In our case the occurrence
of form factors in the theory, i.e., violation of the concept of locality at
small distances, is connected with the stochasticity of space on small scale.
Averaging of any fields independent of their nature (i.e., mass, spin, charge,
etc.) over this stochastic space leads to the nonlocal fields considered by
Efimov (1977). In other words, stochasticity of space (after averaging over a
large scale) as a self-memory makes the theory nonlocal.
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